What is Traffic Prediction? Traffic prediction is the process of forecasting traffic conditions, such as congestion and travel times, using historical traffic data.
Papers and Code
Aug 06, 2025
Abstract:In recent years, traffic prediction has achieved remarkable success and has become an integral component of intelligent transportation systems. However, traffic data is typically distributed among multiple data owners, and privacy constraints prevent the direct utilization of these isolated datasets for traffic prediction. Most existing federated traffic prediction methods focus on designing communication mechanisms that allow models to leverage information from other clients in order to improve prediction accuracy. Unfortunately, such approaches often incur substantial communication overhead, and the resulting transmission delays significantly slow down the training process. As the volume of traffic data continues to grow, this issue becomes increasingly critical, making the resource consumption of current methods unsustainable. To address this challenge, we propose a novel variable relationship modeling paradigm for federated traffic prediction, termed the Channel-Independent Paradigm(CIP). Unlike traditional approaches, CIP eliminates the need for inter-client communication by enabling each node to perform efficient and accurate predictions using only local information. Based on the CIP, we further develop Fed-CI, an efficient federated learning framework, allowing each client to process its own data independently while effectively mitigating the information loss caused by the lack of direct data sharing among clients. Fed-CI significantly reduces communication overhead, accelerates the training process, and achieves state-of-the-art performance while complying with privacy regulations. Extensive experiments on multiple real-world datasets demonstrate that Fed-CI consistently outperforms existing methods across all datasets and federated settings. It achieves improvements of 8%, 14%, and 16% in RMSE, MAE, and MAPE, respectively, while also substantially reducing communication costs.
Via

Aug 07, 2025
Abstract:Online advertising systems typically use a cascaded architecture to manage massive requests and candidate volumes, where the ranking stages allocate traffic based on eCPM (predicted CTR $\times$ Bid). With the increasing popularity of auto-bidding strategies, the inconsistency between the computationally sensitive retrieval stage and the ranking stages becomes more pronounced, as the former cannot access precise, real-time bids for the vast ad corpus. This discrepancy leads to sub-optimal platform revenue and advertiser outcomes. To tackle this problem, we propose Bidding-Aware Retrieval (BAR), a model-based retrieval framework that addresses multi-stage inconsistency by incorporating ad bid value into the retrieval scoring function. The core innovation is Bidding-Aware Modeling, incorporating bid signals through monotonicity-constrained learning and multi-task distillation to ensure economically coherent representations, while Asynchronous Near-Line Inference enables real-time updates to the embedding for market responsiveness. Furthermore, the Task-Attentive Refinement module selectively enhances feature interactions to disentangle user interest and commercial value signals. Extensive offline experiments and full-scale deployment across Alibaba's display advertising platform validated BAR's efficacy: 4.32% platform revenue increase with 22.2% impression lift for positively-operated advertisements.
Via

Aug 07, 2025
Abstract:As automated vehicles (AVs) increasingly integrate into mixed-traffic environments, evaluating their interaction with human-driven vehicles (HDVs) becomes critical. In most research focused on developing new AV control algorithms (controllers), the performance of these algorithms is assessed solely based on performance metrics such as collision avoidance or lane-keeping efficiency, while largely overlooking the human-centred dimensions of interaction with HDVs. This paper proposes a structured evaluation framework that addresses this gap by incorporating metrics grounded in the human-robot interaction literature. The framework spans four key domains: a) interaction effect, b) interaction perception, c) interaction effort, and d) interaction ability. These domains capture both the performance of the AV and its impact on human drivers around it. To demonstrate the utility of the framework, we apply it to a case study evaluating how a state-of-the-art AV controller interacts with human drivers in a merging scenario in a driving simulator. Measuring HDV-HDV interactions as a baseline, this study included one representative metric per domain: a) perceived safety, b) subjective ratings, specifically how participants perceived the other vehicle's driving behaviour (e.g., aggressiveness or predictability) , c) driver workload, and d) merging success. The results showed that incorporating metrics covering all four domains in the evaluation of AV controllers can illuminate critical differences in driver experience when interacting with AVs. This highlights the need for a more comprehensive evaluation approach. Our framework offers researchers, developers, and policymakers a systematic method for assessing AV behaviour beyond technical performance, fostering the development of AVs that are not only functionally capable but also understandable, acceptable, and safe from a human perspective.
Via

Aug 06, 2025
Abstract:The Controller Area Network (CAN) protocol is a standard for in-vehicle communication but remains susceptible to cyber-attacks due to its lack of built-in security. This paper presents a multi-stage intrusion detection framework leveraging unsupervised anomaly detection and supervised graph learning tailored for automotive CAN traffic. Our architecture combines a Variational Graph Autoencoder (VGAE) for structural anomaly detection with a Knowledge-Distilled Graph Attention Network (KD-GAT) for robust attack classification. CAN bus activity is encoded as graph sequences to model temporal and relational dependencies. The pipeline applies VGAE-based selective undersampling to address class imbalance, followed by GAT classification with optional score-level fusion. The compact student GAT achieves 96% parameter reduction compared to the teacher model while maintaining strong predictive performance. Experiments on six public CAN intrusion datasets--Car-Hacking, Car-Survival, and can-train-and-test--demonstrate competitive accuracy and efficiency, with average improvements of 16.2% in F1-score over existing methods, particularly excelling on highly imbalanced datasets with up to 55% F1-score improvements.
* arXiv admin note: substantial text overlap with arXiv:2507.19686
Author note: This submission is an extension of the above work by the same
author
Via

Jul 30, 2025
Abstract:Traffic congestion due to uncertainties, such as accidents, is a significant issue in urban areas, as the ripple effect of accidents causes longer delays, increased emissions, and safety concerns. To address this issue, we propose a robust framework for predicting the impact of accidents on congestion. We implement Automated Machine Learning (AutoML)-enhanced Deep Embedding Clustering (DEC) to assign congestion labels to accident data and predict congestion probability using a Bayesian Network (BN). The Simulation of Urban Mobility (SUMO) simulation is utilized to evaluate the correctness of BN predictions using evidence-based scenarios. Results demonstrate that the AutoML-enhanced DEC has outperformed traditional clustering approaches. The performance of the proposed BN model achieved an overall accuracy of 95.6%, indicating its ability to understand the complex relationship of accidents causing congestion. Validation in SUMO with evidence-based scenarios demonstrated that the BN model's prediction of congestion states closely matches those of SUMO, indicating the high reliability of the proposed BN model in ensuring smooth urban mobility.
Via

Jul 30, 2025
Abstract:While data-driven trajectory prediction has enhanced the reliability of autonomous driving systems, it still struggles with rarely observed long-tail scenarios. Prior works addressed this by modifying model architectures, such as using hypernetworks. In contrast, we propose refining the training process to unlock each model's potential without altering its structure. We introduce Generative Active Learning for Trajectory prediction (GALTraj), the first method to successfully deploy generative active learning into trajectory prediction. It actively identifies rare tail samples where the model fails and augments these samples with a controllable diffusion model during training. In our framework, generating scenarios that are diverse, realistic, and preserve tail-case characteristics is paramount. Accordingly, we design a tail-aware generation method that applies tailored diffusion guidance to generate trajectories that both capture rare behaviors and respect traffic rules. Unlike prior simulation methods focused solely on scenario diversity, GALTraj is the first to show how simulator-driven augmentation benefits long-tail learning in trajectory prediction. Experiments on multiple trajectory datasets (WOMD, Argoverse2) with popular backbones (QCNet, MTR) confirm that our method significantly boosts performance on tail samples and also enhances accuracy on head samples.
* Accepted at ICCV 2025
Via

Jul 28, 2025
Abstract:Accurate prediction of traffic accident severity is critical for improving road safety, optimizing emergency response strategies, and informing the design of safer transportation infrastructure. However, existing approaches often struggle to effectively model the intricate interdependencies among spatial, temporal, and contextual variables that govern accident outcomes. In this study, we introduce STARN-GAT, a Multi-Modal Spatio-Temporal Graph Attention Network, which leverages adaptive graph construction and modality-aware attention mechanisms to capture these complex relationships. Unlike conventional methods, STARN-GAT integrates road network topology, temporal traffic patterns, and environmental context within a unified attention-based framework. The model is evaluated on the Fatality Analysis Reporting System (FARS) dataset, achieving a Macro F1-score of 85 percent, ROC-AUC of 0.91, and recall of 81 percent for severe incidents. To ensure generalizability within the South Asian context, STARN-GAT is further validated on the ARI-BUET traffic accident dataset, where it attains a Macro F1-score of 0.84, recall of 0.78, and ROC-AUC of 0.89. These results demonstrate the model's effectiveness in identifying high-risk cases and its potential for deployment in real-time, safety-critical traffic management systems. Furthermore, the attention-based architecture enhances interpretability, offering insights into contributing factors and supporting trust in AI-assisted decision-making. Overall, STARN-GAT bridges the gap between advanced graph neural network techniques and practical applications in road safety analytics.
* 10 pages
Via

Jul 30, 2025
Abstract:Accurate human trajectory prediction is one of the most crucial tasks for autonomous driving, ensuring its safety. Yet, existing models often fail to fully leverage the visual cues that humans subconsciously communicate when navigating the space. In this work, we study the benefits of predicting human trajectories using human body poses instead of solely their Cartesian space locations in time. We propose `Social-pose', an attention-based pose encoder that effectively captures the poses of all humans in a scene and their social relations. Our method can be integrated into various trajectory prediction architectures. We have conducted extensive experiments on state-of-the-art models (based on LSTM, GAN, MLP, and Transformer), and showed improvements over all of them on synthetic (Joint Track Auto) and real (Human3.6M, Pedestrians and Cyclists in Road Traffic, and JRDB) datasets. We also explored the advantages of using 2D versus 3D poses, as well as the effect of noisy poses and the application of our pose-based predictor in robot navigation scenarios.
* Accepted to IEEE Transactions on Intelligent Transportation Systems
(T-ITS)
Via

Jul 23, 2025
Abstract:Service-level mobile traffic prediction for individual users is essential for network efficiency and quality of service enhancement. However, current prediction methods are limited in their adaptability across different urban environments and produce inaccurate results due to the high uncertainty in personal traffic patterns, the lack of detailed environmental context, and the complex dependencies among different network services. These challenges demand advanced modeling techniques that can capture dynamic traffic distributions and rich environmental features. Inspired by the recent success of diffusion models in distribution modeling and Large Language Models (LLMs) in contextual understanding, we propose an LLM-Enhanced Spatio-temporal Diffusion Model (LSDM). LSDM integrates the generative power of diffusion models with the adaptive learning capabilities of transformers, augmented by the ability to capture multimodal environmental information for modeling service-level patterns and dynamics. Extensive evaluations on real-world service-level datasets demonstrate that the model excels in traffic usage predictions, showing outstanding generalization and adaptability. After incorporating contextual information via LLM, the performance improves by at least 2.83% in terms of the coefficient of determination. Compared to models of a similar type, such as CSDI, the root mean squared error can be reduced by at least 8.29%. The code and dataset will be available at: https://github.com/SoftYuaneR/LSDM.
* 14 pages, 9 figures
Via

Jul 23, 2025
Abstract:Data-driven traffic state estimation and prediction (TSEP) relies heavily on data sources that contain sensitive information. While the abundance of data has fueled significant breakthroughs, particularly in machine learning-based methods, it also raises concerns regarding privacy, cybersecurity, and data freshness. These issues can erode public trust in intelligent transportation systems. Recently, regulations have introduced the "right to be forgotten", allowing users to request the removal of their private data from models. As machine learning models can remember old data, simply removing it from back-end databases is insufficient in such systems. To address these challenges, this study introduces a novel learning paradigm for TSEP-Machine Unlearning TSEP-which enables a trained TSEP model to selectively forget privacy-sensitive, poisoned, or outdated data. By empowering models to "unlearn," we aim to enhance the trustworthiness and reliability of data-driven traffic TSEP.
Via
